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Abstract. We derive a semiclassical formula for the tunneling current of electrons trapped in a potential well
which can tunnel into and across a wide quantum well. The tunneling current is measured at the second
interface of this well and our calculations idealized an experimental situation where a strong magnetic
field tilted with respect to an electric field was used. It is shown that the contribution to the tunneling
current, due to trajectories which begin at the first interface and end on the second, is dominant for
special periodic orbits which hit both walls of the quantum well and are perpendicular to the first wall.
The resulting formula, which is a semiclassical expression for the total tunneling current, differs in a few
important aspects from the Gutzwiller trace formula for the density of states. The Miller-type modification
of the obtained semiclassical formula for stable orbits is also discussed.

PACS. 03.65.Sq Semiclassical theories and applications – 05.45.MT Semiclassical chaos (“quantum chaos”)

1 Introduction

The statistical properties of the energy level spectrum
of a classically chaotic system is now well understood,
largely through the theoretical work of Balian and Bloch
[1], Gutzwiller [2] and Berry [3] as well as others [4]. In par-
ticular these authors were searching for a correspondence
between the classical mechanics of a dynamical system
and the quantum mechanical properties of the dynami-
cal system. From these investigations, several important
theoretical and experimental developments were made to
explain the quantum-classical correspondence. A first and
central result of this work, the trace formula, relates long-
range fluctuations in the density of quantized levels to
underlying classical periodic orbits (PO). Each PO of the
classical dynamical system with period Tp generates reg-
ular maxima in the level density separated by an energy
∆Ep = ~/Tp. Theoretical studies have also tried to find a
connection between wavefunctions and eigenstates of the
Hamiltonian with the dynamics of classical systems ex-
hibiting chaotic motion. This investigation has given rise
to the discussion of wavefunction scarring by a periodic
orbit or sets of periodic orbits (see e.g. [5,6]). In the case
where the classical motion is regular in the whole phase
space (i.e. when the system is said to be integrable) a
clear and complete correspondence between the quantum
and classical pictures of the system can be made in the
semiclassical limit ~→ 0. In particular, one can generate
from the classical motion on tori, eigenvalues and eigen-
functions of the Hamiltonian via semiclassical ~ → 0 ar-
guments. These arguments are, of course, not applicable
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to classical systems exhibiting chaotic dynamics and for
which quantization rules are still a subject of research.

The influence of classical chaotic motion on the quan-
tum mechanical system has also been investigated exper-
imentally. For example, periodic modulations in the mag-
netoabsorption spectra of highly-excited hydrogenic atoms
are correlated with fluctuations in the density of states
due to closed orbits at energies close to the ionization po-
tential [7,8]. Still more recently similar observations were
made from the oscillatory structure found in the low-field
magnetoresistance spectrum of anti-dot superlattices, the
cause of which was attributed to fluctuations in the den-
sity of states from unstable periodic orbits encircling a
small number of anti-dots [9].

In this paper we investigate a particular system to
which much experimental work has been devoted in re-
cent years [10,11]. The double well potential consisting of
GaAs/(AlGa)As resonant tunneling diodes (RTDs) con-
taining a wide quantum well (QW) has been used to ex-
plore a relationship between the classical and quantum
pictures of electron dynamics. In the presence of a large
uniform magnetic field tilted with respect to the z-axis by
an angle θ and a uniform electric field parallel to the z-axis
(see Fig. 1), the system exhibits chaotic motion for certain
initial conditions in phase space [10–15]. Also it was found
that the chaotic component in phase space increases as θ
increases above 0. However, unstable periodic orbits in the
chaotic sea were also found and were shown to have a pro-
found effect on the QW energy spectrum as well as the
peaks in the resonant tunneling spectrum of magnetotun-
neling spectroscopy. The latter, in particular, established
a link between the current-voltage characteristics of the
RTDs and the underlying classical motion in the QW.
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Fig. 1. Arrangement of the quantum well.

The main purpose of this paper is to obtain a quanti-
tative description of this link. In previous papers [10–15],
the Gutzwiller trace formula for the density of states was
used to specify the relationship between classical periodic
orbits and the tunneling current. But it is clear that the
Gutzwiller formula cannot be immediately applied to tun-
neling phenomena since the density of states is expressed
as a sum over all periodic orbits and it is physically evident
that the resonant tunneling formula has to be connected
only with orbits which start on the LH wall and end on
the RH one (i.e. orbits which hit the RH wall at least
once before evacuating). The contribution from other or-
bits should be small in the semiclassical regime.

We shall derive a semiclassical formula for the resonant
tunneling current and show that the major contribution to
the tunneling current will be from special periodic trajec-
tories which hit the two walls and are perpendicular to the
first wall. The main difference of the obtained expression
for the tunneling current and the usual Gutzwiller trace
formula is that the prefactor is inversely proportional to
the square root of m21 monodromy matrix element for the
former and to (m11 + m22 − 2) element for the later. A
short account of our results has been published in [16].

The problem of resonant tunneling differs from that
of the density of states by the condition that the elec-
tron has a well defined initial state which can tunnel into
the QW and which, after some motion therein, can escape
from the device. Assuming that the tunneling probabil-
ities are small (and ignoring the possibility of tunneling
from the QW back to the emitter) one naturally comes to

a sequential theory of tunneling [17] according to which
one has to compute independently four main ingredients:
(i) the initial state in the first well, (ii) the probability
of tunneling through the first barrier, (iii) the motion in-
side the QW, (iv) the probability of tunneling through the
second barrier.

The plan of the paper is the following. In Section 2 a
general formulation of the problem is presented. In Sec-
tion 3 an approximate wavefunction of the initial state
localized in the emitter well is discussed. Section 4 is de-
voted to a description of a simple but clear picture of tun-
neling through potential barriers. In Section 5 we discuss
the matching of the boundary value of the wave function
with the Green function inside the QW. Then using the
semiclassical expression for the Green function we derive
in Section 6 the semiclassical formula for the tunneling
current. The resulting expression is based on the assump-
tion that pure semiclassical approximation can be applied
for all trajectories.

In real experiments the semiclassical condition is some-
times violated for special trajectories at a particular value
of external field and dimension of experimental devices.
Therefore, corrections to the strict semiclassical formula
are of importance. In Section 7 we discuss a simple mod-
ification which should be valid for regions of phase space
where the classical dynamics is close to being integrable.
In Section 8 the semiclassical approximation of a simpli-
fied model of resonant tunneling proposed in references
[14,15] is derived and in Section 9 we discuss the Miller-
type modification of semiclassical formulae which gener-
alize the torus quantization of reference [15]. Two appen-
dices are added to clarify certain technical points.

2 Formulation of the problem

The classical Hamiltonian for motion of an electron inside
the system, in the presence of an electric field along the
z-axis and a magnetic field tilted by an angle θ in the
(y, z)-plane, can be written as follows:

H =
(px −B0y cos θ +B0z sin θ)2

2m
+

p2
y

2m

+
p2
z

2m
− εz + V (z), (1)

where V (z) is a step-wise potential modeling allowed-
forbidden layers along the z-axis. The schematic view of
effective potential U(z) = −εz + V (z) is presented in
Figure 1.

In order to write the Hamiltonian in the above form we
have used atomic units in which the magnetic field B =
B0 2.35× 105 T, the electric field F = ε 5.14× 1011 V/m,
the distance R = r 0.53 Å and m = 0.067me is the band
edge mass of an electron in GaAs.

In a typical experimental situation [10], B = 11.4 T
and F is in the vicinity of 2.1× 106 V/m which in atomic
units corresponds to B0 = 4.85×10−5 and ε = 4.1×10−6.
The important parameter here is the length for which the
influence of the electric field is of the same order as that
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of the magnetic field [11]: l0 = mF/eB2. For values above
l0 ≈ 60 Å the magnetic field has as large an effect on
the dynamics as the electric field. On the other hand, for
smaller distances the electric field dominates and the effect
of the magnetic field can be treated as a perturbation. In
one experiment [10] the width of the QW was 1200 Å and
both barriers have the width 56 Å. In [11] the LH barrier
had the width 57 Å, the RH barrier 37 Å and the data was
presented for QW of different thicknesses: 400, 600, 850,
and 1200 Å. The scaling properties of this Hamiltonian
have been discussed in [13].

Motion in the direction x is not free although clearly
ṗx = 0. The dependence x(t) can be obtained from inte-
gration of the equation

ẋ =
1

m
(px −B0y cos θ +B0z sin θ). (2)

Since px is a constant of the motion the Hamiltonian in
equation (1) is effectively two-dimensional and it follows
that px can be removed by the shift: y = ỹ + px/B0 cos θ.
This change leads to the 2d Hamiltonian:

H2(ỹ, z) =
p2
ỹ

2m
+

p2
z

2m
+
B2

0

2m
(ỹ cos θ − z sin θ)2

− εz + V (z). (3)

After the canonical change of variables

y′ = ỹ cos θ − z sin θ, z′ = ỹ sin θ + z cos θ

this Hamiltonian is transformed to

H ′2(y′, z′) =
p2
y′

2m
+
B2

0

2m
y′2 +

p2
z′

2m
− ε(z′ cos θ − y′ sin θ) + V (z). (4)

Notice that the previous form is composed of two uncou-
pled modes, the energy in each of which does not change
as a function of time. It follows that the classical motion
is integrable within the QW and that its numerical com-
putation, using the Hamiltonian in equation (4), is easy
in between collisions. For this reason we will work with
this Hamiltonian and integrate the equations of motion in
these variables (we convert back to the physical y and z
coordinates using the formulas above).

It is the collisions with the walls (described by V (z))
which mix energy in the two modes and hence destroy the
integrable nature of the problem. At θ = 0 no such mixing
occurs and the system is integrable, motion in phase space
is on tori and WKB quantization can be applied to extract,
semiclassically, all the quantum mechanical information
desired. For θ > 0 the motion is no longer integrable and
the chaotic component of phase space in general increases
as θ increases. Or if we increase B0 at fixed θ, regular
regions in phase space are destroyed and become chaotic
(see the evolution in Fig. 2). It is in the chaotic regime
that we will pursue an analysis and the tunneling current
formula will be specific to the contribution from isolated
unstable orbits submerged in a chaotic sea. For stable

and almost stable orbits special approximations will be
discussed later.

The quantum Hamiltonian has the same form as its
classical analogue but py and pz are considered as opera-
tors. The energy levels and wavefunctions of the problem
can, in principle, be computed from a numerical solution
of the Schrödinger equation. One of the difficulties encoun-
tered when tackling the problem of resonant tunneling is
the form of the wavefunction in the emitter well. All the in-
formation of the electron, before tunneling has occurred,
will be contained here. What to do with this wavefunc-
tion from the point of view of tunneling into the QW and
a connection with motion therein are the problems that
come after. We shall use a form for the initial state that
facilitates subsequent treatment. This approach, outlined
in the following sections, gives a good first approximation
but at the same time its accuracy is limited by the sim-
plicity of the initial state and the treatment of tunneling
into the QW that follows this approximation. Neverthe-
less, because our main purpose is to derive a semiclassical
trace formula for tunneling into the quantum well without
a detailed account of the form of the initial state, we will
use an oversimplified form for the initial state based on a
perturbation theory expansion over the diamagnetic term
(see e.g. [18]).

3 The initial state

The applied electric field puts the system under bias and
accumulates charge in the emitter well. A bound (or quasi-
bound) state at the emitter-QW interface at liquid-helium
temperatures gives rise to a degenerate two-dimensional
electron gas which is the initial state for electrons which
tunnel into the QW. The formation of the emitter state
depends on the exact shape of the confining potential and
the mutual interaction between electrons and its correct
description is a rather complicated problem. We will by-
pass these difficulties and treat the problem as described
above.

The energy corresponding to the Hamiltonian (3), to

first order, is given by E = 〈ψ|Ĥ|ψ〉 where ψ is a zero
order wavefunction which we will write in the following
form:

ψ(y, z) = ψ(y)χ(z). (5)

χ(z) is a 1d wavefunction for motion in the z direction(
p̂2
z

2m
+ U(z)

)
χ(z) = E(z)χ(z), (6)

and U(z) is a linear-wise effective potential along the
z-direction.

The in-plane wavefunction ψn(y) is given by the Lan-
dau level eigenfunction for motion in the magnetic field:(

1

m
(B‖y +B⊥〈z〉)

2 +
p̂2
y

2m

)
ψ(y) = E(x,y)ψ(y), (7)
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Fig. 2. Poincaré surfaces of section at θ = 11◦, ε = 8× 10−6 and z = 0 for different magnetic field. We plot ẏ/ẏ◦ versus y/y◦
with y◦ =

√
2mE/β and ẏ◦ =

√
2E/m. The large stable region on the right in (a) corresponds to a one bounce periodic orbit,

the one on the left to a four bounce periodic orbit. As the magnetic field increases, this stable region shifts to the right on the
surface of section, (b), (c), (d) and finally disappears in a tangent bifurcation, (e), (f) at B◦ ≈ 3.47 × 10−5.

where B‖ = B0 cos θ and B⊥ = B0 sin θ (parallel and per-
pendicular with respect to the electric field). Note that
there is a shift due to the diamagnetic term in the pertur-
bation expansion and the corresponding energy becomes
the sum of three terms:

E = E(z) +E(diam) +E(x,y). (8)

The first term is an unperturbed sub-band energy in the
first well for the wavefunction χ(z), the second is the dia-
magnetic shift

E(diam) =
B2
⊥

2m
(〈z2〉 − 〈z〉2),

where 〈. . . 〉 =
∫
χ(z) . . . χ(z)dz is a mean value over the

function χ(z), and the third term is the energy of the
Landau level for the in-plane (x, y) problem

E(x,y) = (n+ 1/2)B‖/m.

At sufficiently large magnetic field and at low tempera-
tures the system will occupy only the lowest lying state
with n = 0. The corresponding in-plane eigenfunction
(with px = 0) is

ψ0(y) =

(
B‖

π

)1/4

exp

(
−

1

2
B‖(y − ỹ)2

)
, (9)

where ỹ = 〈z〉 tan θ is a shift due to the diamagnetic term
in the perturbation expansion.

The three terms in (8) have the following values:

E(z) = α(ε2/m)1/3,

E(diam) = βB2
⊥/(m)5/3ε2/3,

E(x,y) = γB‖/m, (10)

where α, β, γ are numerical factors on the order of unity
(γ = 1/2).
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For simplicity we shall use a variational anzats for
the normalized wavefunction describing motion along the
z-axis (see [18])

χ(z) = 2a−3/2z exp(z/a), −∞ ≤ z ≤ 0 (11)

although the exact solution in terms of an Airy function
is, of course, possible. We define the parameter a from the
condition that it minimizes the energy functional

E(z) =

∫
χ

(
−

1

2m

d2

dz2
+ εz

)
χdz. (12)

From this, one gets a = (2/3)1/3(mε)−1/3 which gives
β = 31/32−7/3 ≈ 0.3 and α = (3/2)5/3 ≈ 1.97. (The exact
solution of the Schrödinger equation with the linear poten-
tial, in terms of the Airy function under the assumption
that the height of the barrier is very big gives for the low-
est level α = 1.86). For experimental values of the fields all
three terms (putting B‖ ≈ B⊥ ≈ B0) are approximately
of the same order and the perturbation theory should be
taken with more care. Still we shall use this approach as
it permits us to have a clear initial picture of the problem
at hand without adding further complications.

4 Tunneling

Knowing the form of the wave function in the first well
one can compute the probability of tunneling through the
first barrier. An important consequence of our treatment
of the initial state wavefunction (6) is the fact that one has
to consider only one dimensional tunneling in the z direc-
tion. The in-plane part of the whole wave function ψ(x, y)
remains the same throughout the tunneling process.

Let us evoke a few well-known and useful relationships
for quasi-bound states important also to our analysis (see
e.g. [19]). The conservation of the probability current

Jµ = −
i

2m
(ψ̄∂µψ − ∂µψ̄ψ)

gives

∂

∂t
|ψ(x, t)|2 = −∂µJµ. (13)

For a quasi-bound state ψ(x, t) = ψ(x) exp(−iEt) the en-
ergy E must have an imaginary part Γ naturally associ-
ated with the possibility of tunneling

E = E0 −
i

2
Γ. (14)

Integrating equation (13) over a large volume V sur-
rounded by a surface B one gets

Γ =
1∫

V
|ψ|2dv

∫
B

Jdσ. (15)

Assuming that the tunneling probability is small, ψ is
large only inside the initial well and the integral in the

denominator can be taken just over the first well. There-
fore to compute Γ it is necessary to know the current in
the region where there is no possibility of returning back
(or it is very small).

The calculations are particularly simple in the semi-
classical approximation for one dimensional models. In one
dimension the scattering on a barrier is characterized by
the reflection (r) and transmission (t) coefficients which
obey the relationship

|r|2 + |t|2 = 1. (16)

The wave function before the barrier can be written as the
sum of incoming and outcoming waves

ψ(x) = ψ+(x) + rψ−(x), (17)

and after the barrier it has to be described only by an
outcoming wave

ψ(x) = tψ+(x) (18)

where ψ±(x) are the standard semiclassical functions

ψ±(x) =
1√
k(x)

exp

(
±i

∫ x

k(x′)dx′
)
, (19)

and k(x) =
√

2m(E − U(x)).
For a step-wise barrier

t = 2i
√

sin 2Φ1 sin 2Φ2e−∆e−i(Φ1+Φ2)

×
1

1− e−2∆e−2i(Φ1+Φ2)
, (20)

r = e−2iΦ1
1− e−2∆e2i(Φ1−Φ2)

1− e−2∆e−2i(Φ1+Φ2)
, (21)

where

tanΦi = p(xi)/k(xi),

p(x) =
√

2m(U2(x)−E),

∆ =

∫ x2

x1

p(x)dx,

and x1 (x2) correspond to the left (right) coordinate of
the barrier.

When ∆ is large

t = 2i
√

sin 2Φ1 sin 2Φ2e−∆e−i(Φ1+Φ2) (22)

r = e−2iΦ1e−u (23)

and u = 2i sin 2Φ1e−2iΦ2e−2∆. Note that 2Φ plays the role
of the additional phase shift for reflection on a wall of
finite height.

Computation of the imaginary part of the quasi-bound
state energy follows from knowledge of the transmission
coefficient. In the semiclassical approximation in the first
well |ψ|2 = 2/k(x) and one gets the standard formula

Γ =
1

T
|t|2, (24)
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where

T = 2m

∫
dx

k(x)

is the period of the classical motion in the first well. These
formulas indicate that each time a particle, trapped in the
emitter well, hits the barrier it has the probability of tun-
neling equal to the square of the tunneling coefficient and
a probability of tunneling per unit time equal to the proba-
bility multiplied by the number of collisions per unit time,
1/T . For lowest states the semiclassical approximation is
not accurate and the prefactor in this formula should be
modified.

Ignoring the tunneling, let ψ0(x) be a wave function
inside the first well normalized by the usual condition∫
|ψ0|2dx = 1. Then according to (18) the wave function

just after the barrier is

χ1(z) =
C√
k(z)

exp

(
i

∫ z

x2

k(z′)dz′
)
, (25)

where the modulus of the prefactor is determined by the
imaginary part of the quasi-bound state

|C|2 = mΓ1. (26)

We put here a subscript 1 to stress that this quantity has
been computed for the first well.

5 Semiclassical matching

The next step is to compute the corresponding wave-
function in the interior of the QW and in particular on
the second barrier wall at z = d. Call this wavefunction
ψ2(y, z) and the tunneled wavefunction, in the vicinity of
the emitter-QW interface, z = 0, ψ1(y, z). As discussed
above, the initial state wavefunction was put in the sepa-
rable form

ψ1(y, z) = χ1(z)ψ0(y), (27)

where χ1(z) is given by (25) and ψ0(y) by (9) but the fol-
lowing considerations are quite general and can be applied
for many similar problems.

Because the QW is assumed to be wide we will calcu-
late transmission probabilities between two points within
the QW semiclassically and consider ψ1(y, z) to be a
boundary value wavefunction, in the vicinity of z = 0,
for the (unknown) function ψ(y, z).

An explicit form of this function can be obtained from
the usual boundary representation of wavefunctions as fol-
lows.

Let us consider the equations:

(E − Ĥ†(x))ψ(x) = 0 (28)

and

(E − Ĥ(x))G(x′,x, E) = δ(x′ − x), (29)

where G(x′,x, E) is a (retarded) Green function in the
energy representation for motion from point x = (y, z) to

point x′ = (y′, z′) and Ĥ(x) is the quantum mechanical
Hamiltonian of the type (1)

Ĥ(x) =
1

2m
(p + A)2 + V (x), (30)

where we have chosen

A = (−B0y cos θ +B0z sin θ, 0, 0), (31)

p = −i∇ and Ĥ†(x) is obtained from Ĥ(x) by changing
the sign of the vector potential.

Multiplying equation (28) by G(x′,x, E) and equa-
tion (29) by ψ(x), subtracting these equations and in-
tegrating over a volume V , encircling the point x′, one
obtains:

ψ(x′) =
1

2m

∫
V

dx
(
ψ(x)(∇+ iA(x))2G(x′,x)

−G(x′,x)(∇− iA(x))2ψ(x)
)
. (32)

Since the vector potential (31) has been chosen in the
gauge ∂µAµ = 0 the integrand can be written as ∂µJµ
and the current Jµ is given by:

Jµ(x) =
1

2m
(ψ(x)∂µG(x′,x)−G(x′,x)∂µψ(x)

+ 2iAµ(x)G(x′,x)ψ(x)).

Stokes’ theorem permits one to replace the integral over
the volume by one over the surrounding closed boundary.
Let us choose this boundary of integration to be restricted
from one side by the LH wall and from the other side by
an arbitrary surface very far from the point of tunneling
(x = 0). Since the contribution from this (infinitely re-
moved) surface tends to zero in the semiclassical limit (for
the retarded Green function) one concludes that the wave
function inside the QW is given by the following integral
(in 2 dimensions):

ψ(x) =
1

2m

∫
dq(G(x,q)∂zψ1(q)− ψ1(q)∂zG(x,q)),

(33)

where q is the vector with coordinates (y, 0) and the
boundary values of ψ1(q) are given by equation (27). In
Appendix A we shall show that this expression corre-
sponds to the first order perturbation theory result on
the tunneling amplitude similar to the perturbation the-
ory used by Bardeen in [17].

To use this formula one has to compute the exact
Green function (29). Assuming that the QW is sufficiently
wide one can safely use the standard semiclassical approxi-
mation (see e.g. [3]) for the 2d Green functionG2(x′,x, E).
In this approximation the 2d Green function is represented
by a sum over all classical trajectories in the (y, z) plane
connecting two points x and x′:

G2(x′,x, E) =
∑
j

Gj(x
′,x, E), (34)
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where Gj(x
′,x, E) is the semiclassical contribution of an

individual classical trajectory (labeled by j)

Gj(x
′,x, E) =

m
√
k2k1

AjDj exp
(

iSj(x
′,x, E)− i

π

2
µj

)
.

(35)

Sj(x
′,x, E) is the classical action calculated along the

classical trajectory (j) connecting initial and final points,
µj is the Maslov index for this trajectory which equals
the number of conjugate or focal points counted along the
trajectory, and Aj is a prefactor

Aj =
1

i(2πi)1/2

∣∣∣∣ ∂2Sj

∂t1∂t2

∣∣∣∣1/2. (36)

Here k2 and k1 are the modulus of the full momentum, t2
and t1 are the coordinates perpendicular to the trajectory
in the final and initial point. In actual calculations it is
convenient to express second derivatives of the action via
the elements of the monodromy matrix [3,20]. The latter
is defined as the matrix M = mij connecting the values of
the coordinate and the conjugate momentum in the plane
perpendicular to a given trajectory in the final and initial
points: (

t
pt

)
final

=

(
m11 m12

m21 m22

)(
t
pt

)
initial

. (37)

The monodromy matrix can, in principle, be computed
from the classical equations of motion linearized in the
vicinity of a given trajectory and its importance comes
mainly from the fact that their matrix elements are
connected by second derivatives of the classical action
S(t2, t1) [3,20]:

∂2S(t2, t1)

∂t21
=
m11

m12
,

∂2S(t2, t1)

∂t2∂t1
= −

1

m12
,

∂2S(t2, t1)

∂t22
=
m22

m12
· (38)

The formulae (34–38) are the standard semiclassical ex-
pressions for the Green function. In our case, nevertheless,
two modifications have to be made in order to arrive at
a form which is useful for our problem. First, our Green
function describes motion inside a well whose walls have a
finite width. Therefore after each reflection it is necessary
to multiply the above expression by the reflection coeffi-
cient similar to (21). In the leading order of the semiclas-
sical approximation it just gives a reflection phase which
is different from standard ones like those corresponding to
Dirichlet or Neumann boundary conditions. Later we shall
see, in the case of extremely clean devices, that differences
of the modulus of the reflection coefficient from unity will
be important. Second, in real structures the motion of an
electron is always perturbed by impurities and by various
inelastic processes which induce an effective damping to

the contribution of classical motion. In a reasonable ap-
proximation (see e.g. [22]) it can be modeled by adding a
small imaginary part Γ0 to the energy which is equivalent
to the multiplication of the expression (35) by an addi-
tional damping factor exp(−Γ0Tj) where Tj is the time of
motion along the trajectory (j) and 1/Γ0 plays the role of
the elastic mean free time for motion in the quantum well.
In the following we ignore the difference between various
kinds of mean free paths and in particular the difference
between the mean value of the Green function and the
product of the two Green functions which can be impor-
tant in describing the real experiments [22]. This is an
over-simplified approximation and further investigations
on this subject are desirable.

Therefore each term in equation (34) should be multi-
plied by an effective damping factor

Dj = rj exp(−Γ0Tj), (39)

where rj is the total reflection coefficient. The existence
of the damping will give preference, in the final result, to
orbits that naturally have the shortest length.

The calculation of the Green function when one of its
arguments is on the boundary of the QW (or very close to
it) requires special attention. In this case there are 2 dif-
ferent contributions. The first corresponds to a trajectory
with momentum pz > 0 which does not hit the LH wall.
(We assume that the region of the QW lies at z ≥ 0.)
The second contribution comes from a trajectory which
has the same initial conditions as the first one but with
a z-momentum of opposite sign, pz < 0. This trajectory
is reflected from the boundary and then follows a path
very close to the first trajectory (provided the initial point
is near the boundary). Of course the contribution of the
second trajectory has to be multiplied by the reflection
coefficient. Therefore

G(x,q )|z′=0 = (1 + r1)Gj(x,q0), (40)

and

∂

∂z′
G(x,q )|z′=0 = −ipz(1− r1)Gj(x,q0), (41)

where r1 is the reflection coefficient from the LH wall, q =
(y, z′), and Gj(x,q ) is the contribution of one trajectory
starting from the point q0 = (y, 0) with pz > 0 and ending
at the point x.

6 Motion in the quantum well

The explicit expression for the Green function and the
value of the wave function in the vicinity of the LH barrier
(27) permits one to make a semiclassical computation of
the wave function at any point inside the QW. A difficulty
appears here because in equations (28, 29) it was assumed
that the function ψ(x) is an eigenfunction of the Hamil-
tonian (30) but the function (27) is not an exact eigen-
function but a variational approximation to it. Even if it
can give a good approximation to the exact eigenvalue in
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the emitter well, its closeness to the corresponding eigen-
function is questionable. Therefore, by using the simple
function (27) one can, in the best case, obtain an approxi-
mate answer. This point is worth further investigation but
for simplicity we shall continue to use the function (27).

Taking into account that at the LH wall χ1(0) =
1/
√
kz , ∂χ1/∂z(0) = ikzχ1(0) where kz is the value of

the z component of the momentum at z = 0 one obtains:

ψ(x) =
i
√
kzC

2m

∫
ψ0(y)

(
G(x, y) +

i

kz
∂zG(x, y)

)
dy.

(42)

The next step is to substitute the Green function (34) into
this expression. The resulting expression gives ψ(x) as a
sum over all classical trajectories (j) connecting the initial
point q = (y, 0) with the final point x = (yf , zf):

ψ(x) =
∑
j

∫
wj(y)Gj(x, y)dy. (43)

Here we have denoted by Gj(x, y) the contribution (35) to
the Green function from a classical trajectory (j) which
starts from the point q = (y, 0) with initial momentum
p(j) = (py(j), pz(j)) and ends in the fixed point x and
(see Eqs. (40, 41))

wj(y) = i
C

2m
vj
√
pz(j)ψ0(y), (44)

where

vj = (1− r1)
√
pz(j)/kz + (1 + r1)

√
kz/pz(j).

Here pz(j) is the initial z-momentum of trajectory j and
kz = k(0) with k(z) from the initial wave function.

This expression is correct provided either (i) ψ1(y, 0)
and ∂zψ1(y, 0) are boundary values of a certain exact so-
lution of the Schrödinger equation (otherwise the Stokes
theorem cannot be applied), or (ii) when they are consid-
ered as being exact which is usually the case in numerical
calculations based on the simplified model of resonant tun-
neling discussed below. If, as usual, these boundary values
are only an approximation to an exact solution it is quite
difficult to estimate an error in vj without additional nu-
merical calculations. One can for example argue that, just
after the tunneling through the first barrier, the electron
should be represented only as an out-going wave which
means that in the exact solution the in-coming compo-
nent of the current has to vanish. In such an approxima-
tion only one type of trajectory will contribute and

vj =
√
pz(j)/kz +

√
kz/pz(j).

Both expressions equal 2 under a natural condition
|pz(j) − kz| � |pz(j)| and we think that this value is a
good zeroth order approximation for this quantity (in the
sense that it does not require additional numerical com-
putations).

Without the simplifying assumption (26)

Cψ0(y)/
√
kz = ψ1(y, 0) and kz = ∂ logψ1(y, 0)/∂z

are just the boundary values of the initial wave function
on the LH barrier to be determined either numerically or
by more refined methods of multidimensional tunneling.

As each Gj is proportional to exp(iSj) in the semiclas-
sical limit the integration over q can be done by the sad-
dle point method. Assuming that the boundary function
ψ0(y) and other quantities (such as the tunneling probabil-
ities) do not change noticeably with respect to changes in
the Green function, one concludes that in such an approx-
imation the dominant contribution to the above integrals
will be given by points y0 for which

∂S

∂y
|y0 = 0. (45)

In other words only trajectories which are perpendicular
to the plane z = 0 will give a strong contribution. As the
QW is assumed wide, one can suppose that a small change
in y at z = 0 will create a large change in the generating
function and we will assume that Dj � B (see Eq. (47)).
In the following chapter we will see that this property
is satisfied strictly speaking only if the Lyapunov expo-
nent of the periodic orbit is large and the orbit is strongly
unstable. In this case a small change in y effects largely
the action and the Green function oscillates sufficiently
rapidly so that the initial state is just a smoothly varying
function. In this case the integral over the deviation from
the saddle point will cutoff on the scale of the quadratic
form in the exponent (i.e. of the order of 1/

√
|Dj |) and

one can extract all factors like ψ0 just at the value of co-
ordinates corresponding to the periodic orbits considered.

Whereas this treatment is valid in the strong semi-
classical limit this assumption may break down for sta-
ble or nearly stable orbits. We shall treat this problem in
Section 7.

Under the above assumption the integration in the
quadratic approximation gives

ψ(x) =
∑
j

WjGj(x,q0(j)), (46)

where

Wj = wj(y0)

√
2π

|Dj |
eiπsj/4, (47)

and Dj = ∂2S/∂y2 and sj = sign Dj .
This formula has a clear physical meaning. The wave

function at a point inside the QW is represented as a sum
over all classical trajectories which start from the plane
z = 0 with momentum perpendicular to this plane and
end in the point of reference. The relative importance of
different contributions is govern by the wavefunction in
the first well. The amplitude of the tunneling can be com-
puted from knowledge of the imaginary part of the quasi-
bound state in the first well (which in our approximation
depend only on E(z)).
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The knowledge of the wave function (43) permits us to
compute the current ji(xf) = ji(y, d) at the second inter-
face of the QW (i.e. at the RH wall):

ji(xf) = −
i

2m
(ψ∗(xf)∇ψ(xf)−∇ψ

∗(xf)ψ(xf )). (48)

When the electron hits the second barrier it has a proba-
bility of tunneling through the wall. In the same approxi-
mation as before the current after the barrier, (jf), differs
from the current before it, (ji), by a transmission coeffi-
cient through this barrier (t2):

jf = |t2|
2ji. (49)

The total imaginary part, Γ , of the energy of a quasi-
bound state in the emitter well is equal to the total cur-
rent after the second barrier (see (15)). Assuming once
more that the tunneling probability depends only on the
z component of momentum this total current is given by
an integral over all final positions at z = d:

Γ =

∫
S

dσ2ji|t2|
2
. (50)

Substituting here the expression (43) for the wave function
one gets

Γ =
∑
j,k

∫
dydy′wjk(y, y′)

∫
Gj(yf , y)Ḡk(yf , y

′)dyf |t2|
2,

(51)

where

wjk(y, y′) =
1

2m
(p(f)
z (j) + p(f)

z (k))wj(y)w̄k(y′)

and Gj(yf , y) is the contribution (35) of a trajectory (j)
which starts at the point (y, 0) and ends at the point
(yf , d).

In the semiclassical approximation Gj is proportional
to exp(iSj/~) and in the formal limit ~ → 0 it is natural
to perform the integration over all variables by the saddle
point method. Assuming as above that the boundary func-
tion ψ0(y) and other quantities are smooth in the scale of
noticeable changes of the Green function, one concludes
that in such an approximation the dominant contribution
to the above integrals will be given by trajectories in the
vicinity of saddle-points trajectories for which the follow-
ing three conditions are fulfilled:

∂Sj(yf , y)

∂yf
−
∂Sk(yf , y

′)

∂yf
= 0, (52)

and

∂Sj(yf , y)

∂y
= 0,

∂Sk(yf , y
′)

∂y′
= 0. (53)

The first equation means that saddle point trajectories
(labeled here by j and k) should have the same y com-

ponent of momentum: p
(f)
y (j) = p

(f)
y (k). The equality of

y’

(b)

(c)

(a)

y

Fig. 3. Different possibilities for trajectories which give a large
contribution to the tunneling current in the saddle point ap-
proximation. All trajectories are perpendicular to the first wall
at points y and y′. (a) 2 generic trajectories, (b) 2 different
paths on a periodic trajectory when y = y′, (c) 2 different
paths on a periodic trajectory when y 6= y′. In cases (b) and
(c) one can add an arbitrary number of repetitions along the
periodic trajectory.

the pz momenta for these trajectories then follows from
energy conservation. But two classical trajectories passing
through the same point (yf) and having the same momenta
at this point can be either (i) exactly the same trajectory
or (ii) two different paths on the same classical trajectory
(see Fig. 3). We stress that this is a consequence of the
integration over yf .

The second pair of saddle point equations (53) (valid
under the assumption that the initial wave function is
smooth) signifies that the saddle point trajectories should
have zero y component of momentum in both points at the
LH wall (i.e. they have to be perpendicular to the plane
z = 0). The combination of these conditions leads to the
important conclusion that in the strict semiclassical limit
the tunneling current or probability of decay is divided
into two distinct contributions:

Γ = Γ(Weyl) + Γ(osc). (54)

The first term corresponds to the interference of an ar-
bitrary trajectory perpendicular to the plane z = 0 with
itself (see Fig. 3a) and it is given by equation (51) with
j = k while the second one is the result of interference
between different trajectories j 6= k, both of them belong
to a periodic trajectory with zero initial y-momentum (see
Figs. 3b and 3c).

The first term has no quick dependence on the exter-
nal fields and we shall refer to it as the Weyl (or diagonal)
contribution because it plays a role similar to the Weyl
term in the usual Gutzwiller trace formula. This contri-
bution gives a smooth background and in real experiments
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is effectively washed out by taking the second derivative
of the current. We shall discuss it later.

The second term is denoted by Γ(osc). It includes con-
tributions from different paths on the same periodic tra-
jectory which connects both walls and is perpendicular to
the LH wall (see Figs. 3b and 3c). In this case there is an
interference between different terms in the family of tra-
jectories attaching initial and final points but stationary
phase considerations select only a special type of classi-
cal orbits. For clarity we repeat the above arguments and
organize the details in the following scheme:

– The cancelation of linear terms in the exponential of
(51) coming from the stationary phase condition on
the final point y(f) selects only orbits with the same
value of final y momentum.

– Assuming that the initial function ψ0 is smooth, the
integration over the initial position selects only trajec-
tories with initial y-momentum equal to zero.

– These two conditions together show that the dominant
contribution to the tunneling current will come from
classical trajectories in the vicinity of periodic trajec-
tories which hit both LH and RH walls and are per-
pendicular to the LH one. Due to the last condition
these orbits are self-retracing.

– In general for a (self-retracing) periodic orbit (p) there
can exist l points of reflection at z = d and up to 2
points at z = 0. In this case the periodic orbit gives rise
to l or 2l saddle points, each of them has to be taken
into account. Every time an electron hits the second
wall it can tunnel through but the tunneling probabil-
ity t2, in general, is different for each final point.

– The classical trajectories which give the dominant con-
tribution to the resonant tunneling are built from a
segment of a periodic orbit which hits both walls plus
an arbitrary number of loops around this periodic or-
bit. We shall call the first segment of this trajectory
an orbit with n = 0 loops (even if it is not a loop).
All other trajectories make an integer n > 0 number
of loops.

– The sum over trajectories j and k in (51) becomes a
sum over primitive periodic orbits with py(z = 0) = 0,
labeled later by j, and over an integer l for the number
of times that this orbit hits the RH and LH walls.
Finally the integers, n and m, denote the repetition
numbers of periodic orbits.

– For periodic orbits with y = y′ as in Figure 3b, the
difference of actions equals an integer times the action
of the periodic orbit (Sp) but for orbits with y 6= y′ as
in Figure 3c, this difference is a half-integer times Sp.

Applying the above results one gets

Γ(osc) =
∑
j

Γj |ψ0(y0(j)|2|t2|
2
∑
m6=n

Rn+m

(m12(m)m12(n))1/2

×

∫
dydy′dyf exp

[
i
(
Sn(yf , y)− Sm(yf , y

′)

+
π

2
(µn − µm)

)]
, (55)

and

R = e−Γ0Tpr1r2.

Here the factors r1 and r2 are the total reflection coef-
ficient at the LH and RH walls. The factor exp(−Γ0Tp)
is associated with inelastic processes in the QW (see the
discussion after Eq. (38)). Γj is defined by the expression

Γj =
Γ1

8π
|vj |

2. (56)

In this formula mij(n) are the elements of the monodromy
matrix M(n) for the full trajectory with n loops. If we
denote the monodromy matrix for the trajectory with n =
0 loops by M0 and the monodromy matrix for the periodic
trajectory by Mp the total monodromy matrix will be

M(n) = M0M
n
p . (57)

Note that the matrix Mp is defined with respect to the
first wall.

To perform the integration over final and initial values
of y coordinate we expand the actions in the exponent
around each stationary point on both the LH and RH
walls up to second order with deviations from the saddle
points δy1 = δy, δy2 = δy′, δy3 = δyf . It gives

Φ(δyk) =
1

2
Aklδykδyl, (58)

where the matrix Akl is a 3× 3 matrix constructed from
the second derivatives of the actions at the saddle point

Akl =



∂2Sn

∂y2

∂2Sn

∂y∂yf
0

∂2Sn

∂y∂yf

∂2Sn

∂y2
f

−
∂2Sm

∂y2
f

−
∂2Sm

∂y′∂yf

0 −
∂2Sm

∂y′∂yf
−
∂2Sm

∂y′2


. (59)

After the integration over δyj one obtains that

(m12(m)m12(n))−1/2

×

∫
dydy′dyf exp(iSn(yf , y)− iSm(yf , y

′)) =

(2π)3/2(Snm)−1/2 exp
(

i(n−m)Sp + i
π

4

)
, (60)

where the prefactor

Snm = − detA m12(n)m12(m). (61)

To obtain the explicit form of the prefactor Snm it is
convenient to express the second derivatives of the ac-
tion through the monodromy matrix elements as in (63).
Simple calculation gives

Snm = m21(n)m11(m)−m11(n)m21(m).
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But this expression can be written as the (21) matrix el-
ement of the matrix

M−1(m)M(n),

from which it is evident that Snm does not depend on the
matrix M0 in (57) and

Snm = m
(p)
21 (n−m), (62)

where m
(p)
21 (r) is the (21) monodromy matrix element for

r repetitions of the primitive periodic orbit.
It easy to show that the n-fold application of the mon-

odromy matrix M has the following form

Mn =

(
m11(n) m12(n)
m21(n) m22(n)

)
, (63)

where

m11(n) = aλn + bλ−n,

m12(n) =
λn − λ−n

λ− λ−1
m12,

m21(n) =
λn − λ−n

λ− λ−1
m21,

m22(n) = bλn + aλ−n,

a =
λ−m11

λ− λ−1
,

b =
λ−m22

λ− λ−1
·

Here λ and λ−1 are eigenvalues of the monodromy matrix
for a primitive periodic orbit.

Therefore

Snm = m21
λm−n − λn−m

λ− λ−1
·

For periodic orbits with y 6= y′ as in Figure 3c, instead of
equation (57) one has

M(n) = M0M
2n
p/2 and M(m) = M0M

2m+1
p/2 ,

where Mp/2 is the monodromy matrix for half of the prim-
itive periodic orbit. The modifications to equation (62) for
this case are evident.

Let us now consider the phase factor which comes after
the action. This term is made up of three contributions
which we write in the following way

σk→lt (n,m) = µt(n)− µt(m) + sgn(λt(n,m)). (64)

The first (second) term gives the count for the number
of conjugate points for member n (respectively m) in the
family of periodic trajectories. The third term comes from
integration of the quadratic form and is given by

sgn(λt(n,m)) = N+/2−N−/2. (65)

In the previous equation N+(N−) are the number of posi-
tive (negative) eigenvalues in the quadratic form evaluated

at the stationary point at z = 0. In our case the quadratic
form can be expressed as a matrix with three eigenvalues
and N+ +N− = 3. A priori it is not obvious that σt(n,m)
is invariant with respect to changes of starting and final
point that are connected by an integral number of loops. A
first observation that will clarify the problem is that the
number of conjugate points along a periodic orbit does
not scale with the number of loops executed. In particular
it would be possible to count M such points during one
traversal and a number N 6= M on the following traversal.
We begin by making a count of the number of conjugate
points for one loop. We then follow this numerical calcula-
tion by computing the same number for subsequent loops
from simple knowledge of the monodromy matrix and the
count made for the first loop. Furthermore after calculat-
ing m traversals one can make another n−m loops, return
back to the second wall, and count a fixed number of con-
jugate points which depends on n and m and not on the
difference. On the other hand it is clear that for any other
n′ andm′ such that n′−m′ = n−m we will count the same
number plus or minus one. It is then easy to show that the
third term in equation (64) makes the correct compensa-
tion so that, for example, when there is exactly one less
conjugate point counted there is exactly one more nega-
tive eigenvalue and that when there is exactly one more
conjugate point in the count there is exactly one more
positive eigenvalue.

Similar arguments were made in [21] to treat the phase
that appears in the Gutzwiller formula for the level den-
sity. The arguments nevertheless are quite simple and one
can always obtain empirical results to assure oneself that
the phase factor in (64) is an intrinsic property of the pe-
riodic orbit. Furthermore the action Sp evidently scales
with the number of repetitions.

Using the above information we can transform the sum
over n and m into the sum over r = (n−m) and (m+n).
The latter can easily be done and one obtains

Γ(osc) =
∑
p

Γp|t
(tot)
2 (p)|2

1

1− |Rp|2

×
∞∑
r=1

Rrp

(m
(p)
21 (r))1/2

cos
(
rSp −

π

2
σp(r) + i

π

4

)
.

(66)

Here

Γp =
(π

2

)1/2

Γ1|vp|
2|ψ0(y0(p))|2 (67)

is the tunneling probability through the first wall weighted
by the initial wave function at the point of tunneling.

|t(tot)
2 (p)|2 =

∑
l

|t2(p, l)|2e−2Γ0Tl

is the total tunneling probability through the second wall
given by the sum over all point of reflection with the sec-
ond wall weighted by the damping factor corresponding to
the time of motion on the segment of periodic orbit from
the initial point to the lth final point (Tl).
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Fig. 4. Short-period orbits in the (z, y) plane (on the left) and in the (z, x) plane (on the right). (a), (b) One bounce periodic
orbit. (c), (d) One bounce periodic orbit with two bounces on the LH wall. (e), (f) Two bounce periodic orbit with the same
bounce on the RH wall. (g), (h) Three bounce periodic orbit.

The sum above is taken over all primitive periodic tra-
jectories with py(z = 0) = 0 labeled by (p) and y0(p) is the
y coordinate of initial point on the first wall for periodic
orbit (p) (few examples of such trajectories are presented
in Fig. 4),

Rp = r(tot)(p) exp(−Γ0Tp)

where r(tot)(p) is the total reflection coefficient with the
LH and RH walls for one loop around the given periodic
orbit

r(tot) =
∏
j

r(j).

The factor exp(−Γ0Tp), where Tp is the period of the tra-
jectory, has been introduced to take into account various
inelastic processes in the QW. (For a more careful treat-
ment of the damping processes see e.g. [22].) We always
consider the tunneling through different points as a non-
coherent process.

This formula is the main result of the paper. It ex-
presses the tunneling current as a sum over special pe-
riodic trajectories which (i) connect the two walls of the
QW and (ii) are perpendicular to the first barrier. The
contribution of each of these trajectories contains the fac-
tor cos(rSp − πσp(r)/2) like in the usual Gutzwiller trace

formula but the prefactor is different. First of all it is not a
canonical invariant and contains the m21 matrix element
of the monodromy matrix computed along the first bar-
rier unlike the factor λ + λ−1 − 2 which appears in the
Gutzwiller trace formula.

The coefficient of proportionality consists of three
parts. One is connected with the properties of the tunnel-
ing through the first barrier and with the structure of the
initial wave function. The second appears due to different
inelastic processes and the third equals the probability of
tunneling through the second barrier.

It is important to note that all factors depend on the
chosen periodic trajectory.

There is an interesting limit of this formula. It corre-
sponds to the case of very clean devices where Γ0 is very
small. In this case R = r1r2 where ri are coefficients of
reflection. Using the relation R2 = 1− |t|2 and assuming
that the probability of tunneling through the second bar-
rier is much bigger than through the first one we conclude

that R2 = 1− |t(tot)
2 |2 and equation (66) reduces to

Γ(osc) =
∑
p

Γp

∞∑
r=1

Rrp

(m
(p)
21 (r))1/2

× cos
(
rSp −

π

2
σp(r) +

π

4

)
. (68)
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In Section 8 we shall see that this expression equivalent to
the semiclassical approximation resulting from the simpli-
fied model of tunneling discussed in [14,15].

Let us now return to the calculation of the Weyl term.
It is easy to see that the method used for the computation
of Γ(osc) can not be applied for Γ(Weyl). E.g. the prefactor
Snm in (61) equals zero when n = m. This is not sur-
prising as even for the Gutzwiller trace formula the Weyl
contribution comes from short trajectories for which semi-
classical approximation cannot be used. In such a case we
shall proceed as follows.

Let us fix a classical trajectory which starts perpen-
dicular to the first wall at a point y and after the time
Tl(y) crosses the second wall at points yf(y, l). The index
l = 1, 2, . . . denotes the different points of intersection of
this trajectory with the second wall and we write explic-
itly the dependence of y in order to stress that all these
quantities are function only of y. Note that the point y is
not fixed contrary to the above-considered case of periodic
orbits. The Weyl contribution to the tunneling density is
given by the expression similar to equation (55) but with
(i) n = m and (ii) the sum over a discrete sum of periodic
orbits in (55) is replaced by the integral over y and the
sum over all possible points of reflection with the second
wall (l):

Γ(Weyl) =

∫
Γ (y)|ψ0(y)|2dydy′

×
∑
l

|t2(y, l)|2rtot(y, l)e
−Γ0Tl(y) 1

m12

×

∫
dyf exp [i(S(yf , y)− S(yf , y

′))] . (69)

Assuming that y′ = y+δz, yf = yf(y, l)+δyf where δz and
δyf are small and expanding the actions up to the second
order one obtains that the difference of actions equals

−
1

2

∂2S

∂y2
δz2 −

∂2S

∂y∂yf
δzδyf .

Now the integration over δz and δyf gives 2πm12 which
cancels the factor m12 in the denominator.

Finally we get

Γ(Weyl) = 2π

∫
Γ (y)|ψ0(y)|2dy

×
∑
l

|t2(y, l)|2r(tot)(y, l)e
−Γ0Tl(y). (70)

In order to use this formula one has to find a classical
trajectory which begins perpendicular to the first wall
at the point y and follows it for all points of reflection
with the second wall (labeled by l). There is an infinity of
such points but the inelastic cut-off in (70) will effectively
force the sum to converge. Γ (y) (see (67)) is the tunneling
probability through the first wall for the trajectory con-
sidered weighted by the value of the initial wave function
at the point y, t2(y, l) is the tunneling probability through
the second wall at the lth point of reflection, r(tot)(y, l) is

the total reflection coefficient for this segment of trajec-
tory, and Tl(y) is the time of motion from the point y to
the lth point of reflection.

Assume now that the inelastic damping Γ0 is absent
or is very small and the tunneling through the RH wall is
much larger than through the LH wall (e.g. r1 = 1). Then
to compute ΓWeyl one has to calculate the sum over all
possible reflections with the RH wall

S = |t(1)|2 + |r(1)|2|t(2)|2 + |r(1)r(2)|2|t(3)|2 + . . .

+ |
n∏
i=1

r(i)|2|t(n+ 1)|2 + . . . , (71)

where t(i) = t2(i) and r(i) = r2(i). Using the relation
|t(i)|2 = 1 − |r(i)|2 one can transform the above sum as
follows

S = 1− |r(1)|2 + |r(1)|2(1− |r(2)|2)

+ |r(1)r(2)|2(1− |r(3)|2) + . . . = 1. (72)

It means that after the sum over all reflections of a classi-
cal trajectory with the RH wall the dependence of the tun-
neling coefficient will disappear as it should from physical
considerations and the Weyl contribution (70) is defined
merely by the current through the first wall

Γ(Weyl) = 2π

∫
Γ (y)|ψ0(y)|2dy. (73)

7 Next terms of semiclassical expansion

The above mentioned formulae for the tunneling current
have been derived in the strict semiclassical limit under
the assumption that the initial wave function changes
much more slowly than the Green function for motion in
the quantum well.

It is easy to check (see (66)) that this requirement is
equivalent to the condition

β �
∂2S(y, y′)

∂y2
=
m11

m12
, (74)

where β = B cos θ and the same condition for the second
derivative with respect to y′.

It seems that this condition is necessary for any appli-
cation of semiclassical methods to work because the initial
wave function has to be connected with the lowest energy
state in the first well which by definition of the semiclas-
sical approximation has to be smooth on a semiclassical
scale.

Another way of reasoning is the following. The value of
magnetic field in atomic units is always small: (B in a.u.)
= 4.3× 10−6 (B in tesla). On the other hand the second
derivative of the action equals the ratio of two monodromy
matrix elements: ∂2S/∂y2 = m11/m12, and for chaotic
systems there is no reason why this ratio should be par-
ticularly small. The usual situation is that for strongly
chaotic systems all monodromy matrix elements are of
the same order. This ratio may be small for a periodic
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orbit in a stable region as in this case the transversal en-
ergy always remains small. It is a characteristic property
of chaotic systems that there is no possibility of having
certain parameters small during the motion even if their
initial values are small. All quantities after the time of
mixing will be ergodically spread over the whole allowed
region.

But experimental values of external fields and the sizes
of the tunneling diodes sometimes are such that for cer-
tain not very unstable orbits the condition of applicability
of semiclassical approximation may not be justified (see
Fig. 5). Though with increasing the degree of chaoticity
the condition (74) will be satisfied (see e.g. Fig. 5d), con-
tributions of such orbits can be large and the corrections
to the above-derived semiclassical formulae will be of im-
portance.

There exist different types of such corrections (see e.g.
[23]) but we shall restrict ourselves to the contributions
due to the dependence of the initial wavefunction on the
starting point1.

Let the boundary value of the initial wave function be
of the form (9)

ψ0(y) = (β/~π)1/4 exp

(
−

1

2~
βy2

)
, (75)

where for simplicity we drop the diamagnetic shift and as
above β = B‖ = B cos θ. Note the ~ dependence of the
exponent. The main quantity of interest will be the inte-
gral of this function with the Green function as in equa-
tion (43). Using a semiclassical expression for the Green
function (34, 35) one is lead to the computation of the
following integral

I =

∫
exp

(
−
βy2

2~
+ i

S(y, y′)

~

)
g(y)dy, (76)

where the function g(y) coming from different prefactors
is assumed to be smooth in the scale of ~. Then in the
limit ~→ 0 one has to apply the saddle point method to
the exponent which gives the following equation for the
saddle point yc,

i
∂S

∂y
|y=yc −βyc = 0. (77)

If β is small as was assumed in the previous section this
equation reduces to the condition

∂S

∂y
|y=yc= 0,

which can be interpreted as the statement that the dom-
inant contribution to the tunneling current comes from
trajectories perpendicular to the first wall.

1 In principle other quantities like the tunneling probabilities
may also depend sensibly on the initial conditions of a trajec-
tory. In such cases the construction of the perturbation theory
below should be modified.

In general equation (77) should give a complex value
for yc and the dominant contribution will be due to com-
plex trajectories. The calculation of complex trajectories
though numerically possible is not a simple problem and
we propose to treat them by perturbation theory in β.

Let us denote by y0 the solution of the precedent
equation

∂S

∂y
|y=y0= 0.

Then the complex solution of equation (77) can be written
as a formal series in β,

yc = y0 +
∞∑
n=1

(
β

S(2)

)n
yn, (78)

the coefficients of which can be easily obtained recursively
from equation (77).

In this way one obtains

y1 = −iy0,

y2 = −y0

(
1−

S(3)

S(2)
y0

)
,

y3 = iy0

(
1−

S(3)

S(2)
y0

)(
1−

S(3)

S(2)
y0

)
−

i

6

S(4)

S(2)
y3

0, (79)

and so on. In these formulas S(n) denotes the nth deriva-
tive of the action S(y, yf) with respect to y taken at the
point y0. Knowledge of the complex saddle point permits
us to compute the integral (76) in the saddle point ap-
proximation

I = g(yc)

(
2π~

∂2Stot(yc)/∂y2

)1/2

exp

(
i
Stot(yc)

~
+ i

π

4

)
,

(80)

where Stot(y) = S(y) + iβy2/2.
According to the series (78) the action Stot(yc) can also

be expanded in a series of β. Taking into account only the
first correction to yc one gets

Stot = S(y0)−
S(2)

2

(
y0β

S(2)

)2

+ i
βy2

0

2
,

which leads to a small modification of the effective action.
In principle the second and higher terms of the expan-

sion in (78) depend on the third and higher derivatives of
the action which unlike the second derivatives cannot be
expressed through the monodromy matrix elements and
require additional numerical calculations. But in our prob-
lem one can argue that the higher derivatives of the action
should be small in the vicinity of a big island of stability
surrounding a stable or almost stable orbit (exactly where
standard semiclassical approximation cannot be applied).
The main point is that in such a region the classical dy-
namics has to be close to being integrable and is generated
by a Hamiltonian with a quadratic potential. But in such
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Fig. 5. Semiclassical criterion for the two bounce orbit in Figure 2. Top: (m11 +m22)/2 (solid curve) and m12 (jagged curve)
at (a) 11◦ and (b) 34◦ as a function of B◦ × 105. Bottom: values of (m11 +m22)/(2βm12) at (c) 11◦ and (d) 34◦ as a function
of trace (m11 +m22)/2.

a case the semiclassical Green function for fixed time co-
incides with the exact Green function and the action is a
quadratic function of coordinates [24].

Therefore in the calculation of the triple integral in
(51) we shall take into account only quadratic terms of
the expansion of the classical action near the point y0

for which ∂S/∂y = 0 but shall consider the initial wave
function ψ0 in the form (75). We stress that it is not a
strict saddle point approximation because the appearance
of an effective linear term in (75) necessitates a shift of
coordinates and, consequently, a change of the action. This
approximation is valid provided the higher order terms of
the classical action expansion near the point y0 are small
with respect to the second order terms. Effectively the
approximation used is equivalent to the summation of all
terms in the series (78) which do not contain derivatives
of action higher than second ones.

In such an approximation the triple integral in equa-
tion (51) is reduced to the integration of the quadratic
form plus the linear terms coming from the initial state

I =

∫
dδy exp

(
i

2
Aijδyiδyj − Jiδyi

)
, (81)

but now the matrix Aij includes the terms coming from
the initial wave function

Akl =



∂2Sn

∂y2
+ iβ

∂2Sn

∂y∂yf
0

∂2Sn

∂y∂yf

∂2Sn

∂y2
f

−
∂2Sm

∂y2
f

−
∂2Sm

∂y′∂yf

0 −
∂2Sm

∂y′∂yf
−
∂2Sm

∂y′2
+ iβ


,

(82)

and Ji is the vector β(y0, 0, y
′
0). Performing the integration

one obtains a similar result to the one before (see (60))

(m12(m)m12(n))−1/2

×

∫
dydy′dyf exp(iSn(yf , y)− iSm(yf , y

′) =

(2π)3/2(Snm)−1/2 exp

(
i(n−m)Sp + i

π

4
+

i

2
JA−1J

)
,

(83)

where the prefactor

Snm = − detA m12(n)m12(m), (84)
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and A−1 is the matrix inverse of the matrix in (82). Simple
algebra gives

Snm = D(r)

= m21(r) + iβ(m11(r) +m22(r)) − β2m12(r), (85)

and the additional term in the action

∆S(r) =
1

2
βy2

0 +
1

2
βy′20 +

1

2
JA−1J =

1

2
β2

×
y2

0(m22(r)+iβm12(r))+y′20 (m11(r)+iβm12(r))+2y0y
′
0

m21(r)+iβ(m11(r)+m22(r))−β2m12(r)
·

(86)

Here r = n − m and mij(r) are the monodromy ma-
trix elements for r repetitions around a primitive periodic
orbit.

This result will lead to obvious modifications in the
final formula (66) which now will take the form

Γ(osc) =
1

2

∑
p

Γp|t
(tot)
2 (p)|2

1

1− |Rp|2

×
∞∑
r=1

Rrp

(D(r))1/2

(
exp i(rSp +∆S(r)−

π

2
σp(r))

)
+ c.c.

(87)

We stress once more that in order to obtain this result
it is assumed that the derivatives of the classical action
of degree 3 and higher are small. Therefore these formulas
have to be considered as a simple approximation which (i)
does not require information other than monodromy ma-
trix elements and (ii) should be valid when the dynamics
near a periodic orbit is close to being integrable.

To perform more consistent calculations it is neces-
sary to compute explicitly complex classical trajectories
obeying (77) and in the vicinity of bifurcations take into
account higher order terms in the expansion of classical
action.

8 Simplified model of resonant tunneling

Up to now we have discussed the sequential theory of tun-
neling which requires the computation of tunneling prob-
abilities through the barriers of the tunneling diode. In
the articles [14,15] a simplified model of resonant tun-
neling has been discussed which is very convenient from
the point of view of numerical calculation. This model
is based on the Bardeen transfer matrix [17] (see also
Appendix A) according to which the probability of tunnel-
ing (or the imaginary part of the energy level) is given by

Γ = 2π
∑
n

|Wn|
2δ(E −En), (88)

where En denote the exact energy levels in the quantum
well and the coefficients Wn are the matrix elements of

the current between the wave function in the first well ψ0

and the exact wave function ψn in the quantum well

Wn = −
i

2m

∫ (
∂ψ̄0(q )

∂z
ψn(q )− ψ̄0(q )

∂ψn(q )

∂z

)
dy,

(89)

and the z-component of the point q = (y, z) is somewhere
inside the barrier.

In references [14,15] for simplicity it was assumed that
the height of the barrier was so big that wave functions in
the quantum well obey the Dirichlet boundary conditions,
ψn(y, 0) = 0, but we shall use general boundary conditions
(defined by the reflection phase in the Green function) as
was done in the previous sections.

Using the standard form of the Green function in the
energy representation

G(x,x′;E) =
∑
n

ψ̄n(x′)ψn(x)

E −En + iε
, (90)

one can express equations (88, 89) through the exact
Green function

Γ = −
1

2m2

∫
Im(Φ̂G(q,q′;E))dydy′, (91)

where the operator Φ̂ has the form

Φ̂ =

(
∂ψ̄0(q )

∂z
− ψ̄0(q )

∂

∂z

)(
∂ψ0(q′)

∂z′
− ψ0(q′)

∂

∂z′

)
.

(92)

The semiclassical approximation for the Green function
(34, 35) naturally leads to an expression of the current as
a sum over all classical trajectories (j) connecting points
(y, 0) and (y′, 0) on the first wall. Using the separable form
of the initial wave function (27) (which was also assumed
in [14,15]) and calculating the current at the right border
of the first barrier (at point z = 0) one obtains

Γ = −
Γ1

2mkz

∑
j

∫
dydy′ψ̄0(y)ψ0(y′)

× Im((1 + r1)kz + (1− r1)pz)((1 + r∗1)kz

+ (1− r∗1)p′z)Gj(y, y
′;E), (93)

where kz is the momentum coming from the initial wave
function, pz and p′z are the z-components of momentum
at the points (y, 0) and (y′, 0) respectively and r1 is the
reflection coefficient from the wall (see (40, 41)). The con-
tribution of an individual classical trajectory, Gj , is given
by equation (35).

There are two different types of contribution to this
formula. The first one comes from very short trajecto-
ries and corresponds to the Weyl term discussed in the
previous section. The second term is connected with long
classical trajectories which in order to describe tunnel-
ing have to hit the RH wall. The latter term describes
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the oscillatory contribution in the current and is propor-
tional to the integral with a quickly oscillating phase

Γ(osc) =
√

2πi
∑
j

Γj

∫
dydy′

1
√
m12

× eiS(y,y′)−iπµ/2ψ0(y)ψ0(y′) + c.c., (94)

where Γj is defined in (56) and S(y, y′) is the classical ac-
tion for a trajectory connecting points (y, 0) and (y′, 0) on
the LH wall. In the same approximation as above ψ0(y)
is given by the simple Landau-type wave function and ev-
erything that was discussed in the previous section can
also be applied in this case.

Expanding the action S(y, y′) near the points y0 and
y′0 for which

∂S(y, y′)

∂y
|y=y0= 0,

∂S(y, y′)

∂y′
|y=y0= 0,

up to the second order terms one gets a saddle point
type integral (93) which reduces to the integration of a
quadratic form of 2 variables∫

ψ0(y)ψ̄0(y′)eiS(y,y′) 1
√
m12

dydy′

= ψ(y0)ψ(y′0)eiS(y0,y
′
0)

×

∫
dδy

1
√
m12

exp

(
i

2
Aijδyiδyj − Jiδyi

)
. (95)

Here Aij is a 2× 2 matrix of the form

Akl =


∂2S

∂y2
+ iβ

∂2S

∂y∂y′

∂2S

∂y∂y′
∂2S

∂y′2
+ iβ

, (96)

and Ji = β(y0, y
′
0).

As usual this integral equals

ψ(y0)ψ(y′0)eiS(y0,y
′
0) 2πi
√
m12 detA

ei∆S

with ∆S = 1
2JA

−1J.
Simple calculation gives the prefactor

D(r) = m12 detA = m21 + iβ(m11 +m22)− β2m12,
(97)

and the effective action

∆S(r) =

β2

2

y2
0(m22+iβm12)+y′20 (m11+iβm12)+2y0y

′
0

m21+iβ(m11+m22)−β2m12
, (98)

where all monodromy matrix elements are computed for
a trajectory starting perpendicularly at the first wall at
(y0, 0) and ending at the point (y′0, 0). Therefore it is ei-
ther a self-retracing periodic trajectory or half of such a

trajectory in complete agreement with what was obtained
in the previous section.

Taking into account all factors we obtain

Γ(osc) =
1

2

∑
p

Γp

∞∑
r=1

[ Rrp

(D(r))1/2

× (exp i(rSp +∆S(r) −
π

2
σp(r)) + c.c.

]
. (99)

Comparing this formula with equations (68, 85, 86, 87) one
concludes that the model of references [14,15] corresponds
to the limit of extremely clean device where the tunneling
through the second barrier is much bigger than through
the first one.

9 Miller type modifications for stable periodic
orbits

It is well-known that the Gutzwiller trace formula for the
density of states and other semiclassical formulae require a
modification for stable periodic orbits. The formal reason
for this is the fact that the contribution from a periodic or-
bit (labeled by p) is proportional to (detMn

p −1)1/2 which
for a stable orbit (in 2 dimensions) becomes 2i sin(nφp/2)
where exp(±iφp) are eigenvalues of the monodromy matrix
for a primitive periodic orbit and n denotes the number
of repetitions around it. It is the summation over n which
produces divergences because sin(nφp/2) can be arbitrar-
ily small for any φp.

The simplest method to deal with this difficulty was
proposed by Miller [25] following a clear physical picture.

Let us write the oscillating part of the density of states
as a double sum over primitive periodic orbits and repeti-
tions around it

dosc(E) =
1

π

∑
p

Tp

∞∑
1

1

2i sinnφp/2

× cosn

(
Sp(E)

~
−
π

2
µp

)
. (100)

The Miller modification corresponds

(i) to the formal expansion of the expression

1

2i sin(nφ/2)
=

1

einφ/2 − e−inφ/2

=
∞∑
m=0

e−iφn(m+1/2), (101)

(ii) rewriting the density of states in the form

dosc(E) =
1

2π~
∑
p

Tp

∞∑
m=0

∞∑
n=1

einΦp + c.c., (102)

where

Φp = Sp/~−
π

2
µp − φp(m+ 1/2)
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(iii) performing the summation over n using the relation

∞∑
n=−∞

einφ = 2π
∞∑

N=−∞

δ(φ− 2πN).

This scheme leads to the conclusion that the density of
states in the vicinity of a stable periodic orbit (p) is equal
to the sum of δ-functions

dp(E) =
Tp

~
∑
N

∞∑
m=0

δ

(
Sp(E)

~
− φp

(
m+

1

2

)
−
π

2
µp − 2πN

)
. (103)

Introducing the frequency ωp = φp/Tp the sum within
semiclassical accuracy can be rewritten as follows

dp(E) =
∑
N,m

δ(E −EN,m), (104)

where EN,m are defined by the implicit relation

Sp(EN,m − ε⊥(m)) = 2π~(N + µp/4), (105)

and ε⊥(m) = ~ω(m+ 1/2).
This relation means that in the vicinity of a stable pe-

riodic orbit the motion is integrable and the Hamiltonian
splits up into 2 integrable Hamiltonians. One corresponds
to a harmonic oscillator in the direction perpendicular to
the trajectory with frequency ω and the second to a mo-
tion along the trajectory and with energy ε‖ = E − ε⊥.
Equation (105) is just the WKB quantization condition
for this longitudinal motion. In such an interpretation the
number m in equation (103) has the meaning of a perpen-
dicular quantum number and labels the possible quantum
state in the direction perpendicular to the trajectory. If
the island of stability is finite the summation over m can
not go to∞ as in equation (103) but has to include only a
finite number of states and the maximum number of such
states can be estimated from an area of the island.

In the article [15] similar ideas were applied to the
tunneling current through the resonant diode. Namely it
was assumed that if the island of stability is sufficiently
big, one can approximate the exact wave function in equa-
tion (89) by the product of a longitudinal wave function
and the Landau wavefunction for motion in the uniform
magnetic field β = B cos θ similar to equation (75)

ψk,m(z, y) = ψk(z)ψm(y − y0), (106)

ψm(y) = (
β

π
)1/4 1
√

2mm!
Hm(

√
βy) exp(−

β

2
y2).

(107)

Here Hm(y) are the Hermite polynomials and y0 is the
coordinate of the stable periodic orbit in the center of the
stable island (it is assumed that this orbit is perpendicu-
lar to the first wall.) The energy of such states are exactly
the same as before and in this approximation the tunnel-
ing current associated with such a stable island can be

approximated by

Γ = 2π
∑
N,m

|Wm|
2δ(E −EN,m), (108)

where EN,m are defined by equation (105) and the Wm

are the integrals of overlap of the initial wavefunction as
in (75) with ψm(y) given by equation (107). In [15] it
is shown that this description is in reasonable agreement
with the results of numerical computation.

The purpose of this section is to demonstrate that the
expansion of our expression for the tunneling current in
powers of einφ and the summation of the resulting se-
ries on n, in the spirit of the Miller transformation of the
Gutzwiller trace formula, leads to the above-discussed pic-
ture of separable motion in the vicinity of a stable peri-
odic orbits. The final formula generalizes the one from
reference [15] as it includes the wave functions connected
with the exact Hamiltonian for the perpendicular motion
and depends on exact monodromy matrix elements and
not the approximate ones given by equation (107) which
depend on the universal value β = B cos θ. The latter ap-
proximation is valid only for small θ.

According to equations (97, 98, 99) the tunneling
current is

Γ =
1

2
Γp

∞∑
r=1

D(r)−1/2 exp(ir(Sp −
π

2
µp)

+ i∆S(r)) + c.c., (109)

where Sp and µp are the action and Maslov index for the
periodic orbit considered. The prefactor D(r) and the ex-
ponent ∆S(r) are expressed through the monodromy ma-
trix elements by the following expressions

D(r) = m
(r)
21 + iβ

(
m

(r)
11 +m

(r)
22

)
− β2m

(r)
12 , (110)

and

∆S(r) =
iβ2

2D(r)
[y2

0(m
(r)
22 + iβm

(r)
12 )

+ y′20 (m
(r)
11 + iβm

(r)
12 ) + 2y0y

′
0]. (111)

The m
(r)
ij are the monodromy matrix elements of the rth

repetition of the primitive periodic orbit. Their depen-
dence on r is given in equation (63). Let us consider in
detail the case of a self-retracing stable where m11 = m22

and λ = eiφ. In such a case

Mr =

(
cosφr ρ sinφr

−ρ−1 sinφr cosφr

)
, (112)

where

ρ =
m12

sinφ
·

Substituting these values into (110) and (111) one obtains

D(r) = −(1/ρ+ β2ρ) sinφr + 2iβ cosφr

= i
eiφr

2ρ
[1 + βρ]2[1− z2], (113)
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where

z =
βρ− 1

βρ+ 1
e−iφr,

and

∆S(r) =
iβ2

2D(r)
((cosφr + iβρ sinφr)(y2

0 + y′20 ) + 2y0y
′
0)

=
β2ρ(y2

0 + y′20 )

2(1 + βρ)
−
β2ρ((y2

0 + y′20 )z2 − 2y0y
′
0z)

(β2ρ2 − 1)(1− z2)
·

(114)

In order to expand the resulting expression and obtain a
series in powers of exp(−iφr) we shall use the following
identity [26]

1
√

1− z2
exp

(
−

(x2 + y2)z2 − 2xyz

1− z2

)
=

∞∑
n=0

zn

2nn!
Hn(x)Hn(y). (115)

Finally

Γ =
Γp
√
ρ

(1 + βρ)
√

2
exp

(
−

β2ρ

2(1 + βρ)
(y2

0 + y′20 )

)
×
∞∑
n=0

1

2nn!
Hn(λy0)Hn(λy′0)

(
βρ− 1

βρ+ 1

)n ∞∑
r=−∞

eiΦnr

(116)

where

λ =
β
√
ρ√

β2ρ2 − 1

and

Φn = Sp − π/2µp − φ(n+ 1/2).

But the sum
∑
r exp(iΦpr) is the same as the one con-

sidered above in equation (103) and it will give the sum
over the δ-functions of the energy levels En defined by
equation (105) and

Γ =
π(βρ)1/2

1 + βρ

Γ1

T
exp

(
−

β

2(1 + βρ)
(y2

0 + y′20 )

)

×

∣∣∣∣∣(1− r1)

√
k

kz
+ (1 + r1)

√
kz

k

∣∣∣∣∣
2

×
∞∑
n=0

1

2nn!
Hn(λy0)Hn(λy′0)

(
βρ− 1

βρ+ 1

)n
×
∑
N

δ(E −EN,n). (117)

To find an interpretation of this result one has to con-
sider in more details the Hamiltonian for the motion per-
pendicular to the trajectory. The explicit form of this

Hamiltonian can be found by different methods. The most
straightforward one consists of the calculation first of the
action S(y, y′) for r rotations in the vicinity of a given
primitive periodic trajectory. As above

Sr(y, y
′) =

1

2

(
∂2S

∂y2
y2 + 2

∂2S

∂y∂y′
yy′ +

∂2S

∂y′2
y′2
)

=
m

(r)
11 y

2 +m
(r)
22 y

′2 − 2yy′

2m
(r)
12

. (118)

Using equation (112) one can express m
(r)
ij through e±irφ

Mr =

(
cosφr + ργ sinφr ρ sinφr

−(ρ−1 + γ2ρ) sinφr cosφr − ργ sinφr

)
, (119)

where

ρ =
m12

sinφ

and

γ =
m11 −m22

2m12
·

Putting formally rφ = ωt where ω = φ/Tp one gets the
expression for S(y, y′; t). Now the HamiltonianH(p, y) can
be obtained from the standard relation

H =
∂S

∂t

by expressing in this result the coordinate y′ of the first
point through the initial momentum p, p = −∂S/∂y. In
this way one obtains

H(p, y) =
ω

2

(
ρ(p+ γy)2 +

1

ρ
y2

)
. (120)

It is easy to see that the monodromy matrix for this Hamil-
tonian for the time t = Tp leads to equation (119) as it
should be. It is this Hamiltonian which describes motion
in the direction perpendicular to the trajectory.

We shall restrict ourselves to self-retracing orbits for
which m11 = m22 which is consistent with the fact that
only orbits with py = 0 at the LH wall will contribute
appreciably. The other orbits contributions are semiclas-
sically small. In such a case the quantum Hamiltonian in
the perpendicular coordinate is

H(p, y) =
ω

2

(
ρp2 +

1

ρ
y2

)
. (121)

Its normalized eigenfunctions φn(y) are easily expressed
through the Hermite polynomials2

φn(y) =
1

(πρ)1/4

1
√

2nn!
exp

(
−
y2

2ρ

)
Hn

(
y
√
ρ

)
. (122)

2 Eigenfunctions of the Hamiltonian (120) with γ 6= 0 take
the product form, exp(−iγy2/2)φn(y).
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This function corresponds to the energy En = ω(n+1/2).
Note that the φn(y) depend explicitly on points of the
trajectory because ρ = m12/ sin θ changes along the tra-
jectory. On the other hand the energy of the perpendicular
motion depends only on ω = φ/Tp which is a canonical in-
variant and stays the same at any point on the trajectory
considered.

Therefore the wave function in the vicinity of a sta-
ble orbit can be written as a product of longitudinal and
perpendicular wave functions as in equation (106) but
with ψm(y) replaced by φm(y) from (122) and the nor-
malized longitudinal wave ψk(z) chosen in the following
WKB form

ψk(z) =
A√
k(z)

cos(

∫ z

0

k(z′)dz′ + φ/2). (123)

Here k(z) is the momentum in the z direction, φ is the
reflection phase, r1 = exp(iφ), and the normalization con-
stant |A|2 = 4/T where T is the primitive classical period
of motion

T =

∮
dz

k(z)
·

The overlap integral (89) becomes

Wm(y0) =
A

2
√
k

(kz cos(φ/2) + ik sin(φ/2))

×

∫
ψ0(y, 0)φm(y − y0)dy

=Λm

∫
exp

(
−
βy2

2
−

(y − y0)2

2ρ

)
Hm

(
y−y0
√
ρ

)
dy,

(124)

where

Λm =
AC

2(2mπm!)1/2

(
β

ρ

)1/4

×

(√
kz

k
cos(φ/2) + i

√
k

kz
sin(φ/2)

)
. (125)

In deriving these expressions it was taken into account
that the z-component of the momentum in the QW is
approximately equal to the total momentum k. The con-
stant C and the momentum kz come from the initial wave
function (27).

This integral can be easily computed using the relation
from [26]

1
√

2πu

∫ ∞
−∞

du Hn(u)e−
(x−u)2

2u =

√
(1− 2u)nHn

(
x

√
1− 2u

)
. (126)

One obtains

Wm = Λm

√
2πρ

1 + βρ

× exp

(
−

βy2
0

2(1 + βρ)

)(
βρ− 1

βρ+ 1

)m/2
Hm(−λy0),

(127)

where

λ =
β
√
ρ√

(βρ)2 − 1
·

Performing the summation one finds

Γ =
4π(βρ)1/2

1 + βρ

Γ1

T
exp

(
−

β

2(1 + βρ)
(y2

0 + y′20 )

)
×

(
kz

k
cos2(φ/2) +

k

kz
sin2(φ/2)

)
×
∑
m

1

2mm!

(
βρ− 1

βρ+ 1

)m
Hm(λy0)Hm(λy′0)

×
∑
N

δ(E −EN,m), (128)

where EN,m are defined in equation (105). As∣∣∣∣∣(1− r1)

√
k

kz
+ (1 + r1)

√
kz

k

∣∣∣∣∣
2

=

4

(
kz

k
cos2(φ/2) +

k

kz
sin2(φ/2)

)
,

this result exactly coincides with the Miller type expansion
of our semiclassical formula given by equations (117).

10 Conclusion

We have developed a semiclassical theory of resonant tun-
neling from a quasi-bound state which enters a QW and
tunnels through a second barrier at the other end of the
QW. The final result is a series of semiclassical expres-
sions for the tunneling current of electrons arriving at the
second interface. The first formula (Eq. (66)) applies to
the ergodic regime and gives the contribution of strongly
unstable periodic orbits. In this regime standard semiclas-
sical arguments proved that a good approximation can
be achieved by expanding the actions up to quadratic
terms and performing the integration by the saddle point
method. The second case (Eqs. (87, 99)) corresponds to
stable or slightly unstable orbits and is really a general-
ization of the first one. In this case one should base on the
assumption that the dynamics in the neighborhood of such
orbits is controlled by a one-dimensional quadratic poten-
tial so that the actions in perpendicular coordinates are
still close to being quadratic and, consequently, can easily
be integrated exactly. For big stable regions the Miller-
type formula (see Eq. (117)) is appropriate.
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Our calculation demonstrated that in the semiclassi-
cal approximation the tunneling current is due to special
periodic orbits which in order to contribute significantly
should obey the following two conditions:

– hit the RH wall and
– be perpendicular to the LH wall.

The contribution of such periodic orbits to the tun-
neling current has a form similar to the Gutzwiller trace
formula for the density of state but for (strongly unstable
orbits) it is proportional to the (m21)−1/2 matrix element.
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for many stimulating discussions and for presenting the papers
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thank S.C. Creagh, N.D. Whelan, A. Mouchet, D. Saraga, and
M. Sieber for useful discussions. D.C.R. was supported by the
Natural Sciences and Engineering Research Council of Canada
Fellowship (PGS-B award, No. 148961).

Appendix A: Perturbation theory of tunneling
probability

The purpose of this appendix is to show that equa-
tion (31), which expresses the wave function inside the
quantum well through boundary values of the wave func-
tion of the bound state in the emitter, can be inter-
preted as the result of first order perturbation theory on
the tunneling amplitude quite similar to the one used by
Bardeen [17].

Let us assume that there exist two wells separated by
a barrier between points za and zb and let Φ0(x) be a
wavefunction of a bound state in the first well which would
exist if the second well were absent.

Analogously let us introduce the wavefunctions ψn(x)
which are the wavefunctions of the bound states in the
second well under the assumption that the first well is
absent.

Both Φ0(x) and ψn(x) are not the true eigenfunctions

of our Hamiltonian, Ĥ, but of two new Hamiltonians ĤL

and ĤR

ĤLΦ0 = E0Φ0, ĤRψn = Enψn, (A.1)

which differ from Ĥ

ĤL = Ĥ − VL, ĤR = Ĥ − VR, (A.2)

by certain potentials VL and VR which by construction
equal zero in the following intervals

VL(x) = 0 if z < zb,

VR(x) = 0 if z > za. (A.3)

Note that both Φ(x) and ψn(x) are eigenfunctions of Ĥ
inside the barrier. Now it is natural to use perturbation
theory on VL (or VR) corresponding to the representa-
tion (A.2) as the sum of two terms. The main difficulty

here comes from the fact that the perturbation VL,R can-
not be considered as a small one because it produces
bound states. It is known [27] that in such a situation
the usual perturbation theory diverges and it is necessary
to incorporate all bound states on equal footing.

Therefore we shall look for the exact wavefunctions of
the Hamiltonian Ĥ = ĤL + VL as a sum over all unper-
turbed states

ψ(x) = c0φ0(x) +
∑
n

bnψn(x), (A.4)

and the corresponding expansion of the energy of this
state.

In the zeroth order c0 = 1 and bn = 0. In the next
order one has to take into account the matrix elements of
the transition matrix between Φ0 and ψn,

Vn0 = 〈ψn|Vl|Φ0〉.

Standard formulae for the first terms of perturbation the-
ory (see e.g. [19]) give

b(1)
n =

1

E0 −En
Vn0,

E = E0 + 〈Φ0|VL|Φ0〉+
∑
n

|Vn0|2

E0 −En
· (A.5)

For the computation Vn0 we follow (with modifications)
the method of Bardeen in reference [17]

Vn0 =

∫
dxψ̄n(x)VL(x)Φ0(x)dx

=

∫ ∞
zb

dxψ̄n(Ĥ −E0)Φ0, (A.6)

where we put the limits of the integration on the z variable
in order to stress that outside this region the integral is
zero. Using the fact that

(Ĥ −En)ψn = 0

when x > xa the integrand in the precedent equation can
be rewritten in the more symmetric form

Vn0 =

∫ ∞
zb

(
ψ̄nĤΦn − Ĥψ̄nΦ0 + (En −E0)ψ̄nΦ0

)
.

(A.7)

As the most important states are the ones for which En ≈
E0 one can neglect the second term in this expression and

Vn0 =

∫ ∞
zb

(
ψ̄nĤΦn − Ĥψ̄nΦ0

)
dx. (A.8)

As

Ĥ = −
1

2m
4+ V (x),
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the integrand in this expression is the divergence of the
current

ψ̄nĤΦ0 − Ĥψ̄nΦ0 = −
1

2m
∇µ
(
ψ̄n∇µΦ0 −∇µψ̄nΦ0

)
.

(A.9)

Performing the integration in equation (A.8) and taking
into account that the boundary terms at infinity vanish
one concludes that

Vn0 =
1

2m

∫
dq

(
ψ̄(q )

∂

∂z
Φ0(q )−

∂

∂z
ψ̄n(q )Φ(q )

)
,

(A.10)

where q = (y, zb) is the vector on the wall of the barrier at
z = zb and the integral is taken over the whole left-hand
wall of the second well. Using equation (A.4, A.5, A.10)
we obtain that the wavefunction in the second well has
the form (note that Φ0(x) is exponentially small in this
region)

ψ(x) =
1

2m

∑
n

1

E0 −En
ψn(x)

×

∫
dq

(
ψ̄n(q)

∂

∂z
Φ0(q)−

∂

∂z
ψ̄n(q)Φ0(q)

)
=

1

2m

∫
dq

(
∂Φ0(q)

∂z
G(x,q;E)−

∂G(x,q;E)

∂z
Φ0(q)

)
,

(A.11)

where we have introduced the Green function for the mo-
tion in the second well as in equation (90).

This expression exactly coincides with equation (33)
derived from the semiclassical matching procedure de-
scribed in Section 5.The same formalism permits us also
to compute the imaginary part of the energy level in (A.5).
Putting E = E+iε and ε→ 0 one gets that E = E− iΓ/2
where

Γ = 2π
∑
n

|Vn0|
2δ(E0 −En). (A.12)

This is the Fermi Golden rule which using (A.10) repro-
duces the Bardeen result in [17].

Appendix B: Resonant tunneling
in one dimension

In this appendix we shall discuss the calculation of the
tunneling current through a one dimensional resonant
diode. Our main purpose here is to clarify the above-
discussed method on a soluble example.

Let us consider a one step-wise barrier. Wave function
before the barrier has the form of a sum of two exponents

ψ(z) =
1
√
k1

(a exp(ik1z) + b exp(−ik1z)), (B.1)

and after the barrier it has the same form but with differ-
ent coefficients a′ and b′

ψ(z) =
1
√
k2

(a′ exp(ik2z) + b′ exp(−ik2z)). (B.2)

Here k1 and k2 are the momentum in the corresponding
regions.

Coefficients a, b and a′, b′ are connected by a trans-
fer matrix whose general form follows from the current
conservation (

a′

b′

)
=

(
α β
ᾱ β̄

)(
a
b

)
, (B.3)

with |α|2 − |β|2 = 1.
The reflection rl, and transmission, tl, coefficients for

the motion from left to right are defined by the condition
that after the barrier there is no in-coming wave

tl =
1

ᾱ
, rl = −

β̄

ᾱ
· (B.4)

The same quantities but for the motion from right to left
have the following values

tr =
1

ᾱ
, rr =

β

ᾱ
· (B.5)

Of course, in any case |r|2 + |t|2 = 1.
Now let we have two barriers separated by a quantum

well of the width L and with momentum k. The total
transfer matrix is the product of three matrices corre-
sponding respectively to the tunneling through the first
barrier (parameters α1 and β1), free motion through the
quantum well (parameters k and L), and the tunneling
through the second barrier (parameters α2 and β2):(
α12 β12

ᾱ12 β̄12

)
=

(
α2 β2

ᾱ2 β̄2

)(
exp(ikL) 0
0 exp(−ikL)

)(
α1 β1

ᾱ1 β̄1

)
.

(B.6)

From this relation one finds

α12 = α1α2 exp(ikL) + β̄1β2 exp(−ikL)

β12 = β1α2 exp(ikL) + ᾱ1β2 exp(−ikL). (B.7)

The total transmission coefficient through this resonant
diode, t12 = 1/ᾱ12, equals

t12 =
1

ᾱ1ᾱ2 exp(−ikL) + β1β̄2 exp(ikL)

= t1 exp(ikL)
∞∑
n=0

(R exp(2ikL))nt2, (B.8)

Here R = r1r2 and r1, t1 and r2, t2 are the reflection and
transmission coefficients through the left and right barrier
respectively (see (B.4, B.5)).

This formula has the clear physical meaning. The to-
tal transmission amplitude is constructed by a few simple
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steps. First of all, the particle has to tunnel into the quan-
tum well (the amplitude of which is described by t1), then
it has to propagate to the second barrier (factor exp(ikL)),
then it can perform an arbitrary number, n, of loops inside
the quantum well (the contribution of each loop equals
r1r2 exp(2ikL)) before it can tunnel through the second
wall with amplitude t2.

By adjusting this two-barrier structure to a “emit-
ter” well one can calculate the imaginary part of a quasi-
bound state formed at the emitter by the standard for-
mula (which is the lowest order of perturbation theory of
tunneling probability)

Γ =
1

T
|t12|

2, (B.9)

where T is the period of motion in the emitter well. The
first factor here, 1/T, is the number of collisions with the
wall per unit time and every time the particle hits the wall
it has a probability of tunneling through it equal |t12|2.
Here only the possibilities of tunneling back to the emitter
are neglected.

Substituting here equation (B.8) one gets

Γ =
1

T |ᾱ1ᾱ2 exp(−ikL) + β1β̄2 exp(ikL)|2

=
|t1|2

T
|t2|

2|
∞∑
n=0

(R exp(2ikL))n|2. (B.10)

The first factor here is the imaginary part of the quasi-
bound state at the emitter without the second barrier
which we called Γ1. The double sum over n and m

|
∞∑
n=0

(R exp(2ikL))n|2 =
∞∑

n,m=0

RnR̄m exp(2ikL(n−m))

(B.11)

can be computed by substitution r = n − m. The final
result is the following

Γ = Γ1
|t2|2

1− |R|2

(
1 +

∞∑
r=1

Rr exp(iSr) + c.c.

)
, (B.12)

where S = 2kL is the classical action inside the quantum
well. This formula is an analog of equation (66) but for
one-dimensional case. We stress that this is an exact re-
sult for the one-dimensional problem considered and no
approximation except ones leading to equation (B.9) has
been made.

Now we shall obtain the same result first by using the
Green function method as was done above and second by
using directly the current conservation. The advantage of
the former is extreme physical clarity of calculation. One
just follows the particle and computes corresponding fac-
tors for each possible process. From mathematical point
of view this method corresponds to the time evolution of
wave packet initially localized in the emitter well. The
second method is more formal and corresponds to a sta-
tionary picture of tunneling. The both will lead to the
same answer which coincides with equation (B.12).

To compute the tunneling probability we have to know
the total in-coming current in a vicinity of the second
barrier. The corresponding wave function is given by the
same expression as in equation (33) but, evidently, without
the integration over perpendicular coordinate

ψ(z) =
1

2m
(G(z, z′)∂z′ψ1(z′)− ∂z′G(z, z′)ψ(z′))|z′=0.

(B.13)

Here ψ1(z′) is the wave function just after the tunneling
point and G(z, z′) is the Green function for the motion
from point z′ to point z > z′ inside the well which can be
written in the form

G(z, z′) =
m

ik
(exp(ik(z − z′))

+ r1 exp(ik(z + z′))

(
∞∑
n=0

(r1r2)n exp(2ikLn)

)
.

(B.14)

The first term is just the free Green function. The second
one corresponds to the trajectory first reflected from the
left boundary and then passing through the final point.
Of course, its contribution should be multiplied by the
reflection coefficient from the first wall, r1. The sum in the
second bracket corresponds to trajectories which perform
an arbitrary number of full loops, n, before coming to the
end point. The contribution of each loop includes the usual
phase factor exp(2ikL) and also reflection coefficients from
both walls.

Similar to equation (25)

ψ1(z) =
C
√
k

exp(ikz), (B.15)

where |C|2 = mΓ1 and by calculating the current in (B.13)
we get

ψ(z) =
C
√
k

exp(ikz)
∞∑
n=0

(r1r2)n exp(2ikLn). (B.16)

Note that the result do not depend on the reflection co-
efficient in front of the second term in (B.14) as it should
be from physical considerations and effectively only one
trajectory gives the contribution.

The total imaginary part of the quasi-bound state in
the emitter well is given by the same formula as equa-
tion (8) in [1] (without the integration)

Γ = j|t2|
2, (B.17)

where j is the in-coming current at the second wall

j =
1

2im
(ψ̄(z)∂zψ(z)− ψ(z)∂zψ̄(z))|z=L. (B.18)

Finally one obtains

Γ = Γ1|
∞∑
n=0

(r1r2)n exp(2ikLn)|2, (B.19)
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which is the same as in equation (B.12). Therefore the
Green function method gives the exact answer for one-
dimensional tunneling.

In the second method there is no need to separate
only one part of the full current as it was done in equa-
tion (B.14) (though it leads to very clear picture of the
process). One can instead compute the total current any-
where inside the quantum well. In this case it is necessary
to know the full Green function inside the quantum well.
Contrary to equation (B.14) it will include four terms

G(z, z′) =
m

ik
(exp(ik(z − z′)) + r1 exp(ik(z + z′)

+ r2 exp(ik(2L− z − z′)

+ r1r2 exp(ik(2L− z + z′))

×

(
∞∑
n=0

(r1r2)n exp(2ikLn)

)
. (B.20)

The third term in this expression corresponds to a trajec-
tory which is reflected from the second wall before coming
to final point and the forth one appears from a trajectory
which first hits the left wall then reflected from the right
wall and only after this motion return to final point. As
usual each type of trajectories can be accompanied by an
arbitrary number of full rotations. It is this Green function
which obeys all boundary conditions.

By computing the current in equation (B.18) one gets

ψ(z) =
C
√
k

(exp(ikz) + r2 exp(ik(2L− z))

×

(
∞∑
n=0

(r1r2)n exp(2ikLn)

)
. (B.21)

As above only trajectory corresponding to out-going cur-
rent from the left wall give non-zero contribution. The
total imaginary part is equal to the total current (B.18)
but now there is no necessity to compute it at z = L as
the current is independent on z.

Simple computation gives

Γ = Γ1(1− |r2|
2)|

∞∑
n=0

(r1r2)n exp(2ikLn)|2. (B.22)

As 1 − |r2|2 = |t2|2 this answer coincides with the result
above.

When the tunneling through the second barrier is
much bigger than through the first one the dependence on

t2 will disappear because in this case r1 ≈ 1, 1 − |R|2 =
|t2|2, and the ratio |t2|2/(1 − |R|2) in above expressions
tends to 1 as it should be.
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